Metamath Proof Explorer


Theorem ausgrusgri

Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020)

Ref Expression
Hypotheses ausgr.1 G = v e | e x 𝒫 v | x = 2
ausgrusgri.1 O = f | f : dom f 1-1 ran f
Assertion ausgrusgri H W Vtx H G Edg H iEdg H O H USGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G = v e | e x 𝒫 v | x = 2
2 ausgrusgri.1 O = f | f : dom f 1-1 ran f
3 fvex Vtx H V
4 fvex Edg H V
5 1 isausgr Vtx H V Edg H V Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
6 3 4 5 mp2an Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
7 edgval Edg H = ran iEdg H
8 7 a1i H W Edg H = ran iEdg H
9 8 sseq1d H W Edg H x 𝒫 Vtx H | x = 2 ran iEdg H x 𝒫 Vtx H | x = 2
10 2 eleq2i iEdg H O iEdg H f | f : dom f 1-1 ran f
11 fvex iEdg H V
12 id f = iEdg H f = iEdg H
13 dmeq f = iEdg H dom f = dom iEdg H
14 rneq f = iEdg H ran f = ran iEdg H
15 12 13 14 f1eq123d f = iEdg H f : dom f 1-1 ran f iEdg H : dom iEdg H 1-1 ran iEdg H
16 11 15 elab iEdg H f | f : dom f 1-1 ran f iEdg H : dom iEdg H 1-1 ran iEdg H
17 10 16 sylbb iEdg H O iEdg H : dom iEdg H 1-1 ran iEdg H
18 17 3ad2ant3 H W ran iEdg H x 𝒫 Vtx H | x = 2 iEdg H O iEdg H : dom iEdg H 1-1 ran iEdg H
19 simp2 H W ran iEdg H x 𝒫 Vtx H | x = 2 iEdg H O ran iEdg H x 𝒫 Vtx H | x = 2
20 f1ssr iEdg H : dom iEdg H 1-1 ran iEdg H ran iEdg H x 𝒫 Vtx H | x = 2 iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
21 18 19 20 syl2anc H W ran iEdg H x 𝒫 Vtx H | x = 2 iEdg H O iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
22 21 3exp H W ran iEdg H x 𝒫 Vtx H | x = 2 iEdg H O iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
23 9 22 sylbid H W Edg H x 𝒫 Vtx H | x = 2 iEdg H O iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
24 6 23 syl5bi H W Vtx H G Edg H iEdg H O iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
25 24 3imp H W Vtx H G Edg H iEdg H O iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
26 eqid Vtx H = Vtx H
27 eqid iEdg H = iEdg H
28 26 27 isusgrs H W H USGraph iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
29 28 3ad2ant1 H W Vtx H G Edg H iEdg H O H USGraph iEdg H : dom iEdg H 1-1 x 𝒫 Vtx H | x = 2
30 25 29 mpbird H W Vtx H G Edg H iEdg H O H USGraph