| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 |  |-  G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } | 
						
							| 2 |  | ausgrusgri.1 |  |-  O = { f | f : dom f -1-1-> ran f } | 
						
							| 3 | 1 2 | ausgrusgri |  |-  ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) | 
						
							| 4 | 3 | 3exp |  |-  ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( ( iEdg ` H ) e. O -> H e. USGraph ) ) ) | 
						
							| 5 | 4 | com23 |  |-  ( H e. W -> ( ( iEdg ` H ) e. O -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) | 
						
							| 7 | 1 | usgrausgri |  |-  ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) | 
						
							| 8 | 6 7 | impbid1 |  |-  ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> H e. USGraph ) ) |