Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
1z |
⊢ 1 ∈ ℤ |
3 |
1 2
|
pm3.2i |
⊢ ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
2 4
|
pm3.2i |
⊢ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) |
6 |
3 5
|
pm3.2i |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ) |
7 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
8 |
7
|
necomi |
⊢ 0 ≠ 1 |
9 |
|
2ne0 |
⊢ 2 ≠ 0 |
10 |
9
|
necomi |
⊢ 0 ≠ 2 |
11 |
8 10
|
pm3.2i |
⊢ ( 0 ≠ 1 ∧ 0 ≠ 2 ) |
12 |
11
|
orci |
⊢ ( ( 0 ≠ 1 ∧ 0 ≠ 2 ) ∨ ( 1 ≠ 1 ∧ 1 ≠ 2 ) ) |
13 |
|
prneimg |
⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ) → ( ( ( 0 ≠ 1 ∧ 0 ≠ 2 ) ∨ ( 1 ≠ 1 ∧ 1 ≠ 2 ) ) → { 0 , 1 } ≠ { 1 , 2 } ) ) |
14 |
6 12 13
|
mp2 |
⊢ { 0 , 1 } ≠ { 1 , 2 } |
15 |
4 1
|
pm3.2i |
⊢ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) |
16 |
3 15
|
pm3.2i |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
17 |
|
1ne2 |
⊢ 1 ≠ 2 |
18 |
17 7
|
pm3.2i |
⊢ ( 1 ≠ 2 ∧ 1 ≠ 0 ) |
19 |
18
|
olci |
⊢ ( ( 0 ≠ 2 ∧ 0 ≠ 0 ) ∨ ( 1 ≠ 2 ∧ 1 ≠ 0 ) ) |
20 |
|
prneimg |
⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( ( 0 ≠ 2 ∧ 0 ≠ 0 ) ∨ ( 1 ≠ 2 ∧ 1 ≠ 0 ) ) → { 0 , 1 } ≠ { 2 , 0 } ) ) |
21 |
16 19 20
|
mp2 |
⊢ { 0 , 1 } ≠ { 2 , 0 } |
22 |
|
3nn |
⊢ 3 ∈ ℕ |
23 |
1 22
|
pm3.2i |
⊢ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) |
24 |
3 23
|
pm3.2i |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
25 |
|
1re |
⊢ 1 ∈ ℝ |
26 |
|
1lt3 |
⊢ 1 < 3 |
27 |
25 26
|
ltneii |
⊢ 1 ≠ 3 |
28 |
7 27
|
pm3.2i |
⊢ ( 1 ≠ 0 ∧ 1 ≠ 3 ) |
29 |
28
|
olci |
⊢ ( ( 0 ≠ 0 ∧ 0 ≠ 3 ) ∨ ( 1 ≠ 0 ∧ 1 ≠ 3 ) ) |
30 |
|
prneimg |
⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 0 ≠ 0 ∧ 0 ≠ 3 ) ∨ ( 1 ≠ 0 ∧ 1 ≠ 3 ) ) → { 0 , 1 } ≠ { 0 , 3 } ) ) |
31 |
24 29 30
|
mp2 |
⊢ { 0 , 1 } ≠ { 0 , 3 } |
32 |
14 21 31
|
3pm3.2i |
⊢ ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) |
33 |
5 15
|
pm3.2i |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
34 |
18
|
orci |
⊢ ( ( 1 ≠ 2 ∧ 1 ≠ 0 ) ∨ ( 2 ≠ 2 ∧ 2 ≠ 0 ) ) |
35 |
|
prneimg |
⊢ ( ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( ( 1 ≠ 2 ∧ 1 ≠ 0 ) ∨ ( 2 ≠ 2 ∧ 2 ≠ 0 ) ) → { 1 , 2 } ≠ { 2 , 0 } ) ) |
36 |
33 34 35
|
mp2 |
⊢ { 1 , 2 } ≠ { 2 , 0 } |
37 |
5 23
|
pm3.2i |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
38 |
28
|
orci |
⊢ ( ( 1 ≠ 0 ∧ 1 ≠ 3 ) ∨ ( 2 ≠ 0 ∧ 2 ≠ 3 ) ) |
39 |
|
prneimg |
⊢ ( ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 1 ≠ 0 ∧ 1 ≠ 3 ) ∨ ( 2 ≠ 0 ∧ 2 ≠ 3 ) ) → { 1 , 2 } ≠ { 0 , 3 } ) ) |
40 |
37 38 39
|
mp2 |
⊢ { 1 , 2 } ≠ { 0 , 3 } |
41 |
15 23
|
pm3.2i |
⊢ ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
42 |
|
2re |
⊢ 2 ∈ ℝ |
43 |
|
2lt3 |
⊢ 2 < 3 |
44 |
42 43
|
ltneii |
⊢ 2 ≠ 3 |
45 |
9 44
|
pm3.2i |
⊢ ( 2 ≠ 0 ∧ 2 ≠ 3 ) |
46 |
45
|
orci |
⊢ ( ( 2 ≠ 0 ∧ 2 ≠ 3 ) ∨ ( 0 ≠ 0 ∧ 0 ≠ 3 ) ) |
47 |
|
prneimg |
⊢ ( ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 2 ≠ 0 ∧ 2 ≠ 3 ) ∨ ( 0 ≠ 0 ∧ 0 ≠ 3 ) ) → { 2 , 0 } ≠ { 0 , 3 } ) ) |
48 |
41 46 47
|
mp2 |
⊢ { 2 , 0 } ≠ { 0 , 3 } |
49 |
36 40 48
|
3pm3.2i |
⊢ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) |
50 |
32 49
|
pm3.2i |
⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) |