| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmplef.v |
⊢ 𝑉 = ( 0 ... 4 ) |
| 2 |
|
usgrexmplef.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 |
| 3 |
|
usgrexmpldifpr |
⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) |
| 4 |
|
prex |
⊢ { 0 , 1 } ∈ V |
| 5 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 6 |
|
prex |
⊢ { 2 , 0 } ∈ V |
| 7 |
|
prex |
⊢ { 0 , 3 } ∈ V |
| 8 |
|
s4f1o |
⊢ ( ( ( { 0 , 1 } ∈ V ∧ { 1 , 2 } ∈ V ) ∧ ( { 2 , 0 } ∈ V ∧ { 0 , 3 } ∈ V ) ) → ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) ) |
| 9 |
4 5 6 7 8
|
mp4an |
⊢ ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) |
| 10 |
3 2 9
|
mp2 |
⊢ 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) |
| 11 |
|
f1of1 |
⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) |
| 12 |
|
id |
⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) |
| 13 |
|
vex |
⊢ 𝑝 ∈ V |
| 14 |
13
|
elpr |
⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ↔ ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) ) |
| 15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 16 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 17 |
|
0re |
⊢ 0 ∈ ℝ |
| 18 |
|
4re |
⊢ 4 ∈ ℝ |
| 19 |
|
4pos |
⊢ 0 < 4 |
| 20 |
17 18 19
|
ltleii |
⊢ 0 ≤ 4 |
| 21 |
|
elfz2nn0 |
⊢ ( 0 ∈ ( 0 ... 4 ) ↔ ( 0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4 ) ) |
| 22 |
15 16 20 21
|
mpbir3an |
⊢ 0 ∈ ( 0 ... 4 ) |
| 23 |
22 1
|
eleqtrri |
⊢ 0 ∈ 𝑉 |
| 24 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 25 |
|
1re |
⊢ 1 ∈ ℝ |
| 26 |
|
1lt4 |
⊢ 1 < 4 |
| 27 |
25 18 26
|
ltleii |
⊢ 1 ≤ 4 |
| 28 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 4 ) ↔ ( 1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4 ) ) |
| 29 |
24 16 27 28
|
mpbir3an |
⊢ 1 ∈ ( 0 ... 4 ) |
| 30 |
29 1
|
eleqtrri |
⊢ 1 ∈ 𝑉 |
| 31 |
|
prelpwi |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → { 0 , 1 } ∈ 𝒫 𝑉 ) |
| 32 |
|
eleq1 |
⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 1 } ∈ 𝒫 𝑉 ) ) |
| 33 |
31 32
|
syl5ibrcom |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 34 |
23 30 33
|
mp2an |
⊢ ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 35 |
|
fveq2 |
⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 1 } ) ) |
| 36 |
|
prhash2ex |
⊢ ( ♯ ‘ { 0 , 1 } ) = 2 |
| 37 |
35 36
|
eqtrdi |
⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 38 |
34 37
|
jca |
⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 39 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 40 |
|
2re |
⊢ 2 ∈ ℝ |
| 41 |
|
2lt4 |
⊢ 2 < 4 |
| 42 |
40 18 41
|
ltleii |
⊢ 2 ≤ 4 |
| 43 |
|
elfz2nn0 |
⊢ ( 2 ∈ ( 0 ... 4 ) ↔ ( 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4 ) ) |
| 44 |
39 16 42 43
|
mpbir3an |
⊢ 2 ∈ ( 0 ... 4 ) |
| 45 |
44 1
|
eleqtrri |
⊢ 2 ∈ 𝑉 |
| 46 |
|
prelpwi |
⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → { 1 , 2 } ∈ 𝒫 𝑉 ) |
| 47 |
|
eleq1 |
⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 1 , 2 } ∈ 𝒫 𝑉 ) ) |
| 48 |
46 47
|
syl5ibrcom |
⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 49 |
30 45 48
|
mp2an |
⊢ ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 50 |
|
fveq2 |
⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 1 , 2 } ) ) |
| 51 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 52 |
|
1nn |
⊢ 1 ∈ ℕ |
| 53 |
|
2nn |
⊢ 2 ∈ ℕ |
| 54 |
|
hashprg |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) ) |
| 55 |
52 53 54
|
mp2an |
⊢ ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) |
| 56 |
51 55
|
mpbi |
⊢ ( ♯ ‘ { 1 , 2 } ) = 2 |
| 57 |
50 56
|
eqtrdi |
⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 58 |
49 57
|
jca |
⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 59 |
38 58
|
jaoi |
⊢ ( ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 60 |
14 59
|
sylbi |
⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 61 |
13
|
elpr |
⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ↔ ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) ) |
| 62 |
|
prelpwi |
⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → { 2 , 0 } ∈ 𝒫 𝑉 ) |
| 63 |
|
eleq1 |
⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 2 , 0 } ∈ 𝒫 𝑉 ) ) |
| 64 |
62 63
|
syl5ibrcom |
⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 65 |
45 23 64
|
mp2an |
⊢ ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 66 |
|
fveq2 |
⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 2 , 0 } ) ) |
| 67 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 68 |
|
2z |
⊢ 2 ∈ ℤ |
| 69 |
|
0z |
⊢ 0 ∈ ℤ |
| 70 |
|
hashprg |
⊢ ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) ) |
| 71 |
68 69 70
|
mp2an |
⊢ ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) |
| 72 |
67 71
|
mpbi |
⊢ ( ♯ ‘ { 2 , 0 } ) = 2 |
| 73 |
66 72
|
eqtrdi |
⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 74 |
65 73
|
jca |
⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 75 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 76 |
|
3re |
⊢ 3 ∈ ℝ |
| 77 |
|
3lt4 |
⊢ 3 < 4 |
| 78 |
76 18 77
|
ltleii |
⊢ 3 ≤ 4 |
| 79 |
|
elfz2nn0 |
⊢ ( 3 ∈ ( 0 ... 4 ) ↔ ( 3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4 ) ) |
| 80 |
75 16 78 79
|
mpbir3an |
⊢ 3 ∈ ( 0 ... 4 ) |
| 81 |
80 1
|
eleqtrri |
⊢ 3 ∈ 𝑉 |
| 82 |
|
prelpwi |
⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → { 0 , 3 } ∈ 𝒫 𝑉 ) |
| 83 |
|
eleq1 |
⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 3 } ∈ 𝒫 𝑉 ) ) |
| 84 |
82 83
|
syl5ibrcom |
⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 85 |
23 81 84
|
mp2an |
⊢ ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 86 |
|
fveq2 |
⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 3 } ) ) |
| 87 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 88 |
87
|
necomi |
⊢ 0 ≠ 3 |
| 89 |
|
3z |
⊢ 3 ∈ ℤ |
| 90 |
|
hashprg |
⊢ ( ( 0 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) ) |
| 91 |
69 89 90
|
mp2an |
⊢ ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) |
| 92 |
88 91
|
mpbi |
⊢ ( ♯ ‘ { 0 , 3 } ) = 2 |
| 93 |
86 92
|
eqtrdi |
⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 94 |
85 93
|
jca |
⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 95 |
74 94
|
jaoi |
⊢ ( ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 96 |
61 95
|
sylbi |
⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 97 |
60 96
|
jaoi |
⊢ ( ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 98 |
|
elun |
⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) ) |
| 99 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑝 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 100 |
99
|
elrab |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 101 |
97 98 100
|
3imtr4i |
⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 102 |
101
|
ssriv |
⊢ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| 103 |
12 102
|
sstrdi |
⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 104 |
103
|
anim2i |
⊢ ( ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) → ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 105 |
|
df-f |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) |
| 106 |
|
df-f |
⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 107 |
104 105 106
|
3imtr4i |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 108 |
107
|
anim1i |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) → ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
| 109 |
|
dff12 |
⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
| 110 |
|
dff12 |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
| 111 |
108 109 110
|
3imtr4i |
⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 112 |
10 11 111
|
mp2b |
⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |