| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrf1oedg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
usgrf1oedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 4 |
3 1
|
usgrf |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 5 |
|
f1f1orn |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
| 7 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 8 |
7
|
a1i |
⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 9 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 10 |
9
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 11 |
8 10
|
eqtrdi |
⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐼 ) |
| 12 |
2 11
|
eqtrid |
⊢ ( 𝐺 ∈ USGraph → 𝐸 = ran 𝐼 ) |
| 13 |
12
|
f1oeq3d |
⊢ ( 𝐺 ∈ USGraph → ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) ) |
| 14 |
6 13
|
mpbird |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ) |