| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvtxval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | df-uvtx | ⊢ UnivVtx  =  ( 𝑔  ∈  V  ↦  { 𝑣  ∈  ( Vtx ‘ 𝑔 )  ∣  ∀ 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝑔  NeighbVtx  𝑣 ) } ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 5 | 4 | difeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑣 } )  =  ( 𝑉  ∖  { 𝑣 } ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  NeighbVtx  𝑣 )  =  ( 𝐺  NeighbVtx  𝑣 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑛  ∈  ( 𝑔  NeighbVtx  𝑣 )  ↔  𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) ) | 
						
							| 8 | 5 7 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝑔  NeighbVtx  𝑣 )  ↔  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) ) | 
						
							| 9 | 2 8 | fvmptrabfv | ⊢ ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  ( Vtx ‘ 𝐺 )  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) } | 
						
							| 10 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 11 | 10 | rabeqi | ⊢ { 𝑣  ∈  ( Vtx ‘ 𝐺 )  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) }  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) } | 
						
							| 12 | 9 11 | eqtri | ⊢ ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) } |