Step |
Hyp |
Ref |
Expression |
1 |
|
uzind4s.1 |
⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑘 ] 𝜑 ) |
2 |
|
uzind4s.2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) |
3 |
|
dfsbcq2 |
⊢ ( 𝑗 = 𝑀 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑀 / 𝑘 ] 𝜑 ) ) |
4 |
|
sbequ |
⊢ ( 𝑗 = 𝑚 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) ) |
5 |
|
dfsbcq2 |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
6 |
|
dfsbcq2 |
⊢ ( 𝑗 = 𝑁 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑁 / 𝑘 ] 𝜑 ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) |
8 |
|
nfs1v |
⊢ Ⅎ 𝑘 [ 𝑚 / 𝑘 ] 𝜑 |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑘 [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 |
10 |
8 9
|
nfim |
⊢ Ⅎ 𝑘 ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) |
11 |
7 10
|
nfim |
⊢ Ⅎ 𝑘 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
12 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
13 |
|
sbequ12 |
⊢ ( 𝑘 = 𝑚 → ( 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) ) |
15 |
14
|
sbceq1d |
⊢ ( 𝑘 = 𝑚 → ( [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ↔ [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ↔ ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) ) |
17 |
12 16
|
imbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) ) ) |
18 |
11 17 2
|
chvarfv |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
19 |
3 4 5 6 1 18
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑘 ] 𝜑 ) |