Metamath Proof Explorer


Theorem uzval

Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion uzval ( 𝑁 ∈ ℤ → ( ℤ𝑁 ) = { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑗 = 𝑁 → ( 𝑗𝑘𝑁𝑘 ) )
2 1 rabbidv ( 𝑗 = 𝑁 → { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } = { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } )
3 df-uz = ( 𝑗 ∈ ℤ ↦ { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } )
4 zex ℤ ∈ V
5 4 rabex { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } ∈ V
6 2 3 5 fvmpt ( 𝑁 ∈ ℤ → ( ℤ𝑁 ) = { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } )