Step |
Hyp |
Ref |
Expression |
1 |
|
vk15.4j.1 |
⊢ ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) |
2 |
|
vk15.4j.2 |
⊢ ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) |
3 |
|
vk15.4j.3 |
⊢ ¬ ∀ 𝑥 ( 𝜏 → 𝜑 ) |
4 |
|
exanali |
⊢ ( ∃ 𝑥 ( 𝜏 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝜏 → 𝜑 ) ) |
5 |
3 4
|
mpbir |
⊢ ∃ 𝑥 ( 𝜏 ∧ ¬ 𝜑 ) |
6 |
|
alex |
⊢ ( ∀ 𝑥 𝜃 ↔ ¬ ∃ 𝑥 ¬ 𝜃 ) |
7 |
6
|
biimpri |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 𝜃 ) |
8 |
7
|
19.21bi |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → 𝜃 ) |
9 |
|
simpl |
⊢ ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 ) |
10 |
9
|
a1i |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 ) ) |
11 |
|
19.8a |
⊢ ( ( 𝜃 ∧ 𝜏 ) → ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) |
12 |
8 10 11
|
syl6an |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) ) |
13 |
|
notnot |
⊢ ( ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) → ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) |
14 |
12 13
|
syl6 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) ) |
15 |
|
con3 |
⊢ ( ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) → ( ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) → ¬ ∀ 𝑥 𝜒 ) ) |
16 |
2 14 15
|
mpsylsyld |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ∀ 𝑥 𝜒 ) ) |
17 |
|
hbe1 |
⊢ ( ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜃 ) |
18 |
17
|
hbn |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ¬ ∃ 𝑥 ¬ 𝜃 ) |
19 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 𝜒 → ∀ 𝑥 ¬ ∀ 𝑥 𝜒 ) |
20 |
5 16 18 19
|
eexinst01 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜒 ) |
21 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ 𝜒 ↔ ¬ ∀ 𝑥 𝜒 ) |
22 |
20 21
|
sylibr |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜒 ) |
23 |
|
pm3.13 |
⊢ ( ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) ) |
24 |
1 23
|
ax-mp |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) |
25 |
|
simpr |
⊢ ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 ) |
26 |
25
|
a1i |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 ) ) |
27 |
|
19.8a |
⊢ ( ¬ 𝜑 → ∃ 𝑥 ¬ 𝜑 ) |
28 |
26 27
|
syl6 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ¬ 𝜑 ) ) |
29 |
|
hbe1 |
⊢ ( ∃ 𝑥 ¬ 𝜑 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜑 ) |
30 |
5 28 18 29
|
eexinst01 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜑 ) |
31 |
|
notnot |
⊢ ( ∃ 𝑥 ¬ 𝜑 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 ) |
32 |
30 31
|
syl |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 ) |
33 |
|
pm2.53 |
⊢ ( ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ¬ ∃ 𝑥 ¬ 𝜑 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) ) |
34 |
24 32 33
|
mpsyl |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) |
35 |
|
exanali |
⊢ ( ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ↔ ¬ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
36 |
35
|
con5i |
⊢ ( ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) → ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
37 |
34 36
|
syl |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
38 |
37
|
19.21bi |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( 𝜓 → 𝜒 ) ) |
39 |
38
|
con3d |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ¬ 𝜓 ) ) |
40 |
|
19.8a |
⊢ ( ¬ 𝜓 → ∃ 𝑥 ¬ 𝜓 ) |
41 |
39 40
|
syl6 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ∃ 𝑥 ¬ 𝜓 ) ) |
42 |
|
hbe1 |
⊢ ( ∃ 𝑥 ¬ 𝜓 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜓 ) |
43 |
22 41 18 42
|
eexinst11 |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜓 ) |
44 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑥 𝜓 ) |
45 |
43 44
|
sylib |
⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜓 ) |