Metamath Proof Explorer


Theorem vk15.4j

Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j is vk15.4jVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vk15.4j.1 ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) )
vk15.4j.2 ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃𝜏 ) )
vk15.4j.3 ¬ ∀ 𝑥 ( 𝜏𝜑 )
Assertion vk15.4j ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 vk15.4j.1 ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) )
2 vk15.4j.2 ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃𝜏 ) )
3 vk15.4j.3 ¬ ∀ 𝑥 ( 𝜏𝜑 )
4 exanali ( ∃ 𝑥 ( 𝜏 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝜏𝜑 ) )
5 3 4 mpbir 𝑥 ( 𝜏 ∧ ¬ 𝜑 )
6 alex ( ∀ 𝑥 𝜃 ↔ ¬ ∃ 𝑥 ¬ 𝜃 )
7 6 biimpri ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 𝜃 )
8 7 19.21bi ( ¬ ∃ 𝑥 ¬ 𝜃𝜃 )
9 simpl ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 )
10 9 a1i ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 ) )
11 19.8a ( ( 𝜃𝜏 ) → ∃ 𝑥 ( 𝜃𝜏 ) )
12 8 10 11 syl6an ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ( 𝜃𝜏 ) ) )
13 notnot ( ∃ 𝑥 ( 𝜃𝜏 ) → ¬ ¬ ∃ 𝑥 ( 𝜃𝜏 ) )
14 12 13 syl6 ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ¬ ∃ 𝑥 ( 𝜃𝜏 ) ) )
15 con3 ( ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃𝜏 ) ) → ( ¬ ¬ ∃ 𝑥 ( 𝜃𝜏 ) → ¬ ∀ 𝑥 𝜒 ) )
16 2 14 15 mpsylsyld ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ∀ 𝑥 𝜒 ) )
17 hbe1 ( ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥𝑥 ¬ 𝜃 )
18 17 hbn ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ¬ ∃ 𝑥 ¬ 𝜃 )
19 hbn1 ( ¬ ∀ 𝑥 𝜒 → ∀ 𝑥 ¬ ∀ 𝑥 𝜒 )
20 5 16 18 19 eexinst01 ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜒 )
21 exnal ( ∃ 𝑥 ¬ 𝜒 ↔ ¬ ∀ 𝑥 𝜒 )
22 20 21 sylibr ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜒 )
23 pm3.13 ( ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) )
24 1 23 ax-mp ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) )
25 simpr ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 )
26 25 a1i ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 ) )
27 19.8a ( ¬ 𝜑 → ∃ 𝑥 ¬ 𝜑 )
28 26 27 syl6 ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ¬ 𝜑 ) )
29 hbe1 ( ∃ 𝑥 ¬ 𝜑 → ∀ 𝑥𝑥 ¬ 𝜑 )
30 5 28 18 29 eexinst01 ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜑 )
31 notnot ( ∃ 𝑥 ¬ 𝜑 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 )
32 30 31 syl ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 )
33 pm2.53 ( ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ¬ ∃ 𝑥 ¬ 𝜑 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) )
34 24 32 33 mpsyl ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) )
35 exanali ( ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ↔ ¬ ∀ 𝑥 ( 𝜓𝜒 ) )
36 35 con5i ( ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) )
37 34 36 syl ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ( 𝜓𝜒 ) )
38 37 19.21bi ( ¬ ∃ 𝑥 ¬ 𝜃 → ( 𝜓𝜒 ) )
39 38 con3d ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ¬ 𝜓 ) )
40 19.8a ( ¬ 𝜓 → ∃ 𝑥 ¬ 𝜓 )
41 39 40 syl6 ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ∃ 𝑥 ¬ 𝜓 ) )
42 hbe1 ( ∃ 𝑥 ¬ 𝜓 → ∀ 𝑥𝑥 ¬ 𝜓 )
43 22 41 18 42 eexinst11 ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜓 )
44 exnal ( ∃ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑥 𝜓 )
45 43 44 sylib ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜓 )