| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtsval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
vtsval.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 3 |
|
vtsval.l |
⊢ ( 𝜑 → 𝐿 : ℕ ⟶ ℂ ) |
| 4 |
1 2 3
|
vtsval |
⊢ ( 𝜑 → ( ( 𝐿 vts 𝑁 ) ‘ 𝑋 ) = Σ 𝑎 ∈ ( 1 ... 𝑁 ) ( ( 𝐿 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑋 ) ) ) ) ) |
| 5 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → 𝐿 : ℕ ⟶ ℂ ) |
| 7 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 9 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → 𝑎 ∈ ℕ ) |
| 10 |
6 9
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( 𝐿 ‘ 𝑎 ) ∈ ℂ ) |
| 11 |
|
ax-icn |
⊢ i ∈ ℂ |
| 12 |
|
2cn |
⊢ 2 ∈ ℂ |
| 13 |
|
picn |
⊢ π ∈ ℂ |
| 14 |
12 13
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 15 |
11 14
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 17 |
9
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → 𝑎 ∈ ℂ ) |
| 18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 19 |
17 18
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( 𝑎 · 𝑋 ) ∈ ℂ ) |
| 20 |
16 19
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑋 ) ) ∈ ℂ ) |
| 21 |
20
|
efcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑋 ) ) ) ∈ ℂ ) |
| 22 |
10 21
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐿 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑋 ) ) ) ) ∈ ℂ ) |
| 23 |
5 22
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( 1 ... 𝑁 ) ( ( 𝐿 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑋 ) ) ) ) ∈ ℂ ) |
| 24 |
4 23
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐿 vts 𝑁 ) ‘ 𝑋 ) ∈ ℂ ) |