| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
⊢ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V |
| 2 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
| 3 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 4 |
2 3
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
| 5 |
4
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 6 |
2 3
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
| 7 |
6
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 8 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
| 9 |
5 7 8
|
vtxdgfval |
⊢ ( 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 10 |
1 9
|
mp1i |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 11 |
|
df-ov |
⊢ ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 12 |
11
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 15 |
13 14 8
|
vtxdgfval |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 16 |
10 12 15
|
3eqtr4rd |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ) |