Metamath Proof Explorer


Theorem vtxdgop

Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021)

Ref Expression
Assertion vtxdgop ( 𝐺𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 opex ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ∈ V
2 fvex ( Vtx ‘ 𝐺 ) ∈ V
3 fvex ( iEdg ‘ 𝐺 ) ∈ V
4 2 3 opvtxfvi ( Vtx ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( Vtx ‘ 𝐺 )
5 4 eqcomi ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ )
6 2 3 opiedgfvi ( iEdg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( iEdg ‘ 𝐺 )
7 6 eqcomi ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ )
8 eqid dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 )
9 5 7 8 vtxdgfval ( ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ∈ V → ( VtxDeg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) )
10 1 9 mp1i ( 𝐺𝑊 → ( VtxDeg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) )
11 df-ov ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ )
12 11 a1i ( 𝐺𝑊 → ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) )
13 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
14 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
15 13 14 8 vtxdgfval ( 𝐺𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) )
16 10 12 15 3eqtr4rd ( 𝐺𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) )