Metamath Proof Explorer


Theorem vtxdgop

Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021)

Ref Expression
Assertion vtxdgop G W VtxDeg G = Vtx G VtxDeg iEdg G

Proof

Step Hyp Ref Expression
1 opex Vtx G iEdg G V
2 fvex Vtx G V
3 fvex iEdg G V
4 2 3 opvtxfvi Vtx Vtx G iEdg G = Vtx G
5 4 eqcomi Vtx G = Vtx Vtx G iEdg G
6 2 3 opiedgfvi iEdg Vtx G iEdg G = iEdg G
7 6 eqcomi iEdg G = iEdg Vtx G iEdg G
8 eqid dom iEdg G = dom iEdg G
9 5 7 8 vtxdgfval Vtx G iEdg G V VtxDeg Vtx G iEdg G = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
10 1 9 mp1i G W VtxDeg Vtx G iEdg G = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
11 df-ov Vtx G VtxDeg iEdg G = VtxDeg Vtx G iEdg G
12 11 a1i G W Vtx G VtxDeg iEdg G = VtxDeg Vtx G iEdg G
13 eqid Vtx G = Vtx G
14 eqid iEdg G = iEdg G
15 13 14 8 vtxdgfval G W VtxDeg G = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
16 10 12 15 3eqtr4rd G W VtxDeg G = Vtx G VtxDeg iEdg G