Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑆 We 𝐵 ) |
2 |
|
isof1o |
⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
3 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
4 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ran 𝑓 = 𝐵 ) |
6 |
|
vex |
⊢ 𝑓 ∈ V |
7 |
6
|
rnex |
⊢ ran 𝑓 ∈ V |
8 |
5 7
|
eqeltrrdi |
⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐵 ∈ V ) |
9 |
8
|
ad2antrl |
⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐵 ∈ V ) |
10 |
|
exse |
⊢ ( 𝐵 ∈ V → 𝑆 Se 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑆 Se 𝐵 ) |
12 |
1 11
|
jca |
⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ) |
13 |
|
weisoeq2 |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) |
14 |
12 13
|
sylancom |
⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) |
15 |
14
|
ex |
⊢ ( 𝑆 We 𝐵 → ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
16 |
15
|
alrimivv |
⊢ ( 𝑆 We 𝐵 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
17 |
|
isoeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
18 |
17
|
mo4 |
⊢ ( ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
19 |
16 18
|
sylibr |
⊢ ( 𝑆 We 𝐵 → ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |