| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isocnv |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
| 2 |
|
isocnv |
⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) |
| 4 |
|
weisoeq |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) |
| 6 |
|
simprl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 7 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 8 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
| 9 |
6 7 8
|
3syl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐹 ) |
| 10 |
|
simprr |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 11 |
|
isof1o |
⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) |
| 12 |
|
f1orel |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐺 ) |
| 13 |
10 11 12
|
3syl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐺 ) |
| 14 |
|
cnveqb |
⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) |
| 16 |
5 15
|
mpbird |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |