| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knatar.1 |
⊢ 𝑋 = ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } |
| 2 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 6 |
|
id |
⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) |
| 7 |
5 6
|
sseq12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) ) |
| 8 |
7
|
intminss |
⊢ ( ( 𝐴 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
| 9 |
3 4 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
| 10 |
1 9
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ 𝐴 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 12 |
11
|
sseq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 13 |
|
pweq |
⊢ ( 𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 15 |
14
|
sseq2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 16 |
13 15
|
raleqbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 17 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑤 ∈ 𝒫 𝐴 ) |
| 19 |
16 17 18
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 21 |
|
id |
⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) |
| 22 |
20 21
|
sseq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) |
| 23 |
22
|
intminss |
⊢ ( ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
| 24 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
| 25 |
1 24
|
eqsstrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ⊆ 𝑤 ) |
| 26 |
|
vex |
⊢ 𝑤 ∈ V |
| 27 |
26
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤 ) |
| 28 |
25 27
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ∈ 𝒫 𝑤 ) |
| 29 |
12 19 28
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
| 30 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) |
| 31 |
29 30
|
sstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) |
| 32 |
31
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ 𝒫 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
| 34 |
|
ssintrab |
⊢ ( ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ↔ ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
| 35 |
33 34
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ) |
| 36 |
22
|
cbvrabv |
⊢ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 37 |
36
|
inteqi |
⊢ ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 38 |
1 37
|
eqtri |
⊢ 𝑋 = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 39 |
35 38
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 40 |
11
|
sseq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 41 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
| 42 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 43 |
42
|
sseq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 44 |
41 43
|
raleqbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 45 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 46 |
44 45 3
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 47 |
3 10
|
sselpwd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 48 |
40 46 47
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 49 |
48 4
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 50 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
| 51 |
50
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 52 |
49 51
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ) |
| 53 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 54 |
53
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 |
|
pweq |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) |
| 56 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 57 |
56
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 58 |
55 57
|
raleqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 59 |
58 45 47
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 60 |
50
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 61 |
39 60
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ) |
| 62 |
54 59 61
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 64 |
|
id |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → 𝑤 = ( 𝐹 ‘ 𝑋 ) ) |
| 65 |
63 64
|
sseq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 66 |
65
|
intminss |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 67 |
52 62 66
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 68 |
38 67
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 69 |
39 68
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 70 |
10 69
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |