| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knatar.1 |
|
| 2 |
|
pwidg |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
|
simp2 |
|
| 5 |
|
fveq2 |
|
| 6 |
|
id |
|
| 7 |
5 6
|
sseq12d |
|
| 8 |
7
|
intminss |
|
| 9 |
3 4 8
|
syl2anc |
|
| 10 |
1 9
|
eqsstrid |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
sseq1d |
|
| 13 |
|
pweq |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
sseq2d |
|
| 16 |
13 15
|
raleqbidv |
|
| 17 |
|
simpl3 |
|
| 18 |
|
simprl |
|
| 19 |
16 17 18
|
rspcdva |
|
| 20 |
|
fveq2 |
|
| 21 |
|
id |
|
| 22 |
20 21
|
sseq12d |
|
| 23 |
22
|
intminss |
|
| 24 |
23
|
adantl |
|
| 25 |
1 24
|
eqsstrid |
|
| 26 |
|
vex |
|
| 27 |
26
|
elpw2 |
|
| 28 |
25 27
|
sylibr |
|
| 29 |
12 19 28
|
rspcdva |
|
| 30 |
|
simprr |
|
| 31 |
29 30
|
sstrd |
|
| 32 |
31
|
expr |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
ssintrab |
|
| 35 |
33 34
|
sylibr |
|
| 36 |
22
|
cbvrabv |
|
| 37 |
36
|
inteqi |
|
| 38 |
1 37
|
eqtri |
|
| 39 |
35 38
|
sseqtrrdi |
|
| 40 |
11
|
sseq1d |
|
| 41 |
|
pweq |
|
| 42 |
|
fveq2 |
|
| 43 |
42
|
sseq2d |
|
| 44 |
41 43
|
raleqbidv |
|
| 45 |
|
simp3 |
|
| 46 |
44 45 3
|
rspcdva |
|
| 47 |
3 10
|
sselpwd |
|
| 48 |
40 46 47
|
rspcdva |
|
| 49 |
48 4
|
sstrd |
|
| 50 |
|
fvex |
|
| 51 |
50
|
elpw |
|
| 52 |
49 51
|
sylibr |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
sseq1d |
|
| 55 |
|
pweq |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
sseq2d |
|
| 58 |
55 57
|
raleqbidv |
|
| 59 |
58 45 47
|
rspcdva |
|
| 60 |
50
|
elpw |
|
| 61 |
39 60
|
sylibr |
|
| 62 |
54 59 61
|
rspcdva |
|
| 63 |
|
fveq2 |
|
| 64 |
|
id |
|
| 65 |
63 64
|
sseq12d |
|
| 66 |
65
|
intminss |
|
| 67 |
52 62 66
|
syl2anc |
|
| 68 |
38 67
|
eqsstrid |
|
| 69 |
39 68
|
eqssd |
|
| 70 |
10 69
|
jca |
|