Metamath Proof Explorer


Theorem weisoeq2

Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weisoeq2 SWeBSSeBFIsomR,SABGIsomR,SABF=G

Proof

Step Hyp Ref Expression
1 isocnv FIsomR,SABF-1IsomS,RBA
2 isocnv GIsomR,SABG-1IsomS,RBA
3 1 2 anim12i FIsomR,SABGIsomR,SABF-1IsomS,RBAG-1IsomS,RBA
4 weisoeq SWeBSSeBF-1IsomS,RBAG-1IsomS,RBAF-1=G-1
5 3 4 sylan2 SWeBSSeBFIsomR,SABGIsomR,SABF-1=G-1
6 simprl SWeBSSeBFIsomR,SABGIsomR,SABFIsomR,SAB
7 isof1o FIsomR,SABF:A1-1 ontoB
8 f1orel F:A1-1 ontoBRelF
9 6 7 8 3syl SWeBSSeBFIsomR,SABGIsomR,SABRelF
10 simprr SWeBSSeBFIsomR,SABGIsomR,SABGIsomR,SAB
11 isof1o GIsomR,SABG:A1-1 ontoB
12 f1orel G:A1-1 ontoBRelG
13 10 11 12 3syl SWeBSSeBFIsomR,SABGIsomR,SABRelG
14 cnveqb RelFRelGF=GF-1=G-1
15 9 13 14 syl2anc SWeBSSeBFIsomR,SABGIsomR,SABF=GF-1=G-1
16 5 15 mpbird SWeBSSeBFIsomR,SABGIsomR,SABF=G