Metamath Proof Explorer


Theorem winafp

Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winafp ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) → ( ℵ ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 winalim2 ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) )
2 vex 𝑥 ∈ V
3 limelon ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On )
4 2 3 mpan ( Lim 𝑥𝑥 ∈ On )
5 alephle ( 𝑥 ∈ On → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) )
6 4 5 syl ( Lim 𝑥𝑥 ⊆ ( ℵ ‘ 𝑥 ) )
7 6 ad2antll ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) )
8 simprl ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = 𝐴 )
9 7 8 sseqtrd ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥𝐴 )
10 8 fveq2d ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) )
11 alephsing ( Lim 𝑥 → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) )
12 11 ad2antll ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) )
13 10 12 eqtr3d ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝑥 ) )
14 elwina ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑦𝐴𝑧𝐴 𝑦𝑧 ) )
15 14 simp2bi ( 𝐴 ∈ Inaccw → ( cf ‘ 𝐴 ) = 𝐴 )
16 15 ad2antrr ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = 𝐴 )
17 13 16 eqtr3d ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝑥 ) = 𝐴 )
18 cfle ( cf ‘ 𝑥 ) ⊆ 𝑥
19 17 18 eqsstrrdi ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝐴𝑥 )
20 9 19 eqssd ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 = 𝐴 )
21 20 fveq2d ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) )
22 21 8 eqtr3d ( ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝐴 ) = 𝐴 )
23 1 22 exlimddv ( ( 𝐴 ∈ Inaccw𝐴 ≠ ω ) → ( ℵ ‘ 𝐴 ) = 𝐴 )