| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfclel | ⊢ ( 𝑥  ∈  { 𝑦  ∣  𝜑 }  ↔  ∃ 𝑧 ( 𝑧  =  𝑥  ∧  𝑧  ∈  { 𝑦  ∣  𝜑 } ) ) | 
						
							| 2 |  | wl-clabv | ⊢ ( 𝑧  ∈  { 𝑦  ∣  𝜑 }  ↔  [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 3 |  | sbequ | ⊢ ( 𝑧  =  𝑥  →  ( [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 4 | 2 3 | bitrid | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∈  { 𝑦  ∣  𝜑 }  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 5 | 4 | pm5.32i | ⊢ ( ( 𝑧  =  𝑥  ∧  𝑧  ∈  { 𝑦  ∣  𝜑 } )  ↔  ( 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝑥  ∧  𝑧  ∈  { 𝑦  ∣  𝜑 } )  ↔  ∃ 𝑧 ( 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 7 |  | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 )  ↔  ( ∃ 𝑧 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 8 |  | ax6ev | ⊢ ∃ 𝑧 𝑧  =  𝑥 | 
						
							| 9 | 8 | biantrur | ⊢ ( [ 𝑥  /  𝑦 ] 𝜑  ↔  ( ∃ 𝑧 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 10 | 7 9 | bitr4i | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝑥  ∧  [ 𝑥  /  𝑦 ] 𝜑 )  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) | 
						
							| 11 | 1 6 10 | 3bitri | ⊢ ( 𝑥  ∈  { 𝑦  ∣  𝜑 }  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) |