Metamath Proof Explorer


Theorem wl-dfclab

Description: Rederive df-clab from wl-clabv . (Contributed by Wolf Lammen, 31-May-2023) (Proof modification is discouraged.)

Ref Expression
Assertion wl-dfclab ( 𝑥 ∈ { 𝑦𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 dfclel ( 𝑥 ∈ { 𝑦𝜑 } ↔ ∃ 𝑧 ( 𝑧 = 𝑥𝑧 ∈ { 𝑦𝜑 } ) )
2 wl-clabv ( 𝑧 ∈ { 𝑦𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 )
3 sbequ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜑 ) )
4 2 3 syl5bb ( 𝑧 = 𝑥 → ( 𝑧 ∈ { 𝑦𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 ) )
5 4 pm5.32i ( ( 𝑧 = 𝑥𝑧 ∈ { 𝑦𝜑 } ) ↔ ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) )
6 5 exbii ( ∃ 𝑧 ( 𝑧 = 𝑥𝑧 ∈ { 𝑦𝜑 } ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) )
7 19.41v ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑧 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) )
8 ax6ev 𝑧 𝑧 = 𝑥
9 8 biantrur ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ( ∃ 𝑧 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) )
10 7 9 bitr4i ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ↔ [ 𝑥 / 𝑦 ] 𝜑 )
11 1 6 10 3bitri ( 𝑥 ∈ { 𝑦𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 )