Step |
Hyp |
Ref |
Expression |
1 |
|
dfclel |
⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) ) |
2 |
|
wl-clabv |
⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
3 |
|
sbequ |
⊢ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
4 |
2 3
|
syl5bb |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
5 |
4
|
pm5.32i |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) ↔ ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
7 |
|
19.41v |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑧 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
8 |
|
ax6ev |
⊢ ∃ 𝑧 𝑧 = 𝑥 |
9 |
8
|
biantrur |
⊢ ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ( ∃ 𝑧 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
10 |
7 9
|
bitr4i |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑥 / 𝑦 ] 𝜑 ) ↔ [ 𝑥 / 𝑦 ] 𝜑 ) |
11 |
1 6 10
|
3bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 ) |