| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfclel |  |-  ( x e. { y | ph } <-> E. z ( z = x /\ z e. { y | ph } ) ) | 
						
							| 2 |  | wl-clabv |  |-  ( z e. { y | ph } <-> [ z / y ] ph ) | 
						
							| 3 |  | sbequ |  |-  ( z = x -> ( [ z / y ] ph <-> [ x / y ] ph ) ) | 
						
							| 4 | 2 3 | bitrid |  |-  ( z = x -> ( z e. { y | ph } <-> [ x / y ] ph ) ) | 
						
							| 5 | 4 | pm5.32i |  |-  ( ( z = x /\ z e. { y | ph } ) <-> ( z = x /\ [ x / y ] ph ) ) | 
						
							| 6 | 5 | exbii |  |-  ( E. z ( z = x /\ z e. { y | ph } ) <-> E. z ( z = x /\ [ x / y ] ph ) ) | 
						
							| 7 |  | 19.41v |  |-  ( E. z ( z = x /\ [ x / y ] ph ) <-> ( E. z z = x /\ [ x / y ] ph ) ) | 
						
							| 8 |  | ax6ev |  |-  E. z z = x | 
						
							| 9 | 8 | biantrur |  |-  ( [ x / y ] ph <-> ( E. z z = x /\ [ x / y ] ph ) ) | 
						
							| 10 | 7 9 | bitr4i |  |-  ( E. z ( z = x /\ [ x / y ] ph ) <-> [ x / y ] ph ) | 
						
							| 11 | 1 6 10 | 3bitri |  |-  ( x e. { y | ph } <-> [ x / y ] ph ) |