Metamath Proof Explorer


Theorem wl-dfclab

Description: Rederive df-clab from wl-clabv . (Contributed by Wolf Lammen, 31-May-2023) (Proof modification is discouraged.)

Ref Expression
Assertion wl-dfclab x y | φ x y φ

Proof

Step Hyp Ref Expression
1 dfclel x y | φ z z = x z y | φ
2 wl-clabv z y | φ z y φ
3 sbequ z = x z y φ x y φ
4 2 3 syl5bb z = x z y | φ x y φ
5 4 pm5.32i z = x z y | φ z = x x y φ
6 5 exbii z z = x z y | φ z z = x x y φ
7 19.41v z z = x x y φ z z = x x y φ
8 ax6ev z z = x
9 8 biantrur x y φ z z = x x y φ
10 7 9 bitr4i z z = x x y φ x y φ
11 1 6 10 3bitri x y | φ x y φ