| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-eudf.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
wl-eudf.2 |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
wl-eudf.3 |
⊢ ( 𝜑 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 4 |
|
wl-eudf.4 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) |
| 5 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜓 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ) |
| 6 |
|
nfeqf1 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 = 𝑢 ) |
| 7 |
6
|
naecoms |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 = 𝑢 ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → Ⅎ 𝑦 𝑥 = 𝑢 ) |
| 9 |
4 8
|
nfbid |
⊢ ( 𝜑 → Ⅎ 𝑦 ( 𝜓 ↔ 𝑥 = 𝑢 ) ) |
| 10 |
1 9
|
nfald |
⊢ ( 𝜑 → Ⅎ 𝑦 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ) |
| 11 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 12 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑢 = 𝑦 ) |
| 13 |
11 12
|
nfan1 |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑢 = 𝑦 ) |
| 14 |
|
equequ2 |
⊢ ( 𝑢 = 𝑦 → ( 𝑥 = 𝑢 ↔ 𝑥 = 𝑦 ) ) |
| 15 |
14
|
bibi2d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑢 = 𝑦 ) → ( ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 17 |
13 16
|
albid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 18 |
3 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ) |
| 20 |
2 10 19
|
cbvexd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 21 |
5 20
|
bitrid |
⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |