Description: Closed form of eu6 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-eutf | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 2 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) |
| 4 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 5 | nfnf1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 | |
| 6 | 5 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
| 7 | 4 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) |
| 8 | simpl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 9 | sp | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) | |
| 10 | 9 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → Ⅎ 𝑦 𝜑 ) |
| 11 | 3 7 8 10 | wl-eudf | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |