| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax6ev |
⊢ ∃ 𝑧 𝑧 = 𝑦 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 3 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 4 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 5 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 6 |
5
|
equcoms |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 7 |
6
|
a1i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) ) |
| 8 |
3 4 7
|
alrimdd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) ) |
| 9 |
2 8
|
eximd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 𝑧 = 𝑦 → ∃ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) ) |
| 10 |
1 9
|
mpi |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 11 |
|
eu6 |
⊢ ( ∃! 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃! 𝑥 𝑥 = 𝑦 ) |