Metamath Proof Explorer


Theorem wl-euequf

Description: euequ proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020)

Ref Expression
Assertion wl-euequf ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃! 𝑥 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 ax6ev 𝑧 𝑧 = 𝑦
2 nfv 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦
3 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
4 nfeqf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 )
5 equequ2 ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
6 5 equcoms ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
7 6 a1i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) ) )
8 3 4 7 alrimdd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) ) )
9 2 8 eximd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 𝑧 = 𝑦 → ∃ 𝑧𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) ) )
10 1 9 mpi ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑧𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
11 eu6 ( ∃! 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑧𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
12 10 11 sylibr ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃! 𝑥 𝑥 = 𝑦 )