Metamath Proof Explorer


Theorem wl-euequf

Description: euequ proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020)

Ref Expression
Assertion wl-euequf ¬ x x = y ∃! x x = y

Proof

Step Hyp Ref Expression
1 ax6ev z z = y
2 nfv z ¬ x x = y
3 nfna1 x ¬ x x = y
4 nfeqf2 ¬ x x = y x z = y
5 equequ2 y = z x = y x = z
6 5 equcoms z = y x = y x = z
7 6 a1i ¬ x x = y z = y x = y x = z
8 3 4 7 alrimdd ¬ x x = y z = y x x = y x = z
9 2 8 eximd ¬ x x = y z z = y z x x = y x = z
10 1 9 mpi ¬ x x = y z x x = y x = z
11 eu6 ∃! x x = y z x x = y x = z
12 10 11 sylibr ¬ x x = y ∃! x x = y