Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-euequf
Next ⟩
wl-mo2t
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-euequf
Description:
euequ
proved with a distinctor.
(Contributed by
Wolf Lammen
, 23-Sep-2020)
Ref
Expression
Assertion
wl-euequf
⊢
¬
∀
x
x
=
y
→
∃!
x
x
=
y
Proof
Step
Hyp
Ref
Expression
1
ax6ev
⊢
∃
z
z
=
y
2
nfv
⊢
Ⅎ
z
¬
∀
x
x
=
y
3
nfna1
⊢
Ⅎ
x
¬
∀
x
x
=
y
4
nfeqf2
⊢
¬
∀
x
x
=
y
→
Ⅎ
x
z
=
y
5
equequ2
⊢
y
=
z
→
x
=
y
↔
x
=
z
6
5
equcoms
⊢
z
=
y
→
x
=
y
↔
x
=
z
7
6
a1i
⊢
¬
∀
x
x
=
y
→
z
=
y
→
x
=
y
↔
x
=
z
8
3
4
7
alrimdd
⊢
¬
∀
x
x
=
y
→
z
=
y
→
∀
x
x
=
y
↔
x
=
z
9
2
8
eximd
⊢
¬
∀
x
x
=
y
→
∃
z
z
=
y
→
∃
z
∀
x
x
=
y
↔
x
=
z
10
1
9
mpi
⊢
¬
∀
x
x
=
y
→
∃
z
∀
x
x
=
y
↔
x
=
z
11
eu6
⊢
∃!
x
x
=
y
↔
∃
z
∀
x
x
=
y
↔
x
=
z
12
10
11
sylibr
⊢
¬
∀
x
x
=
y
→
∃!
x
x
=
y