Metamath Proof Explorer


Theorem wl-euequf

Description: euequ proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020)

Ref Expression
Assertion wl-euequf
|- ( -. A. x x = y -> E! x x = y )

Proof

Step Hyp Ref Expression
1 ax6ev
 |-  E. z z = y
2 nfv
 |-  F/ z -. A. x x = y
3 nfna1
 |-  F/ x -. A. x x = y
4 nfeqf2
 |-  ( -. A. x x = y -> F/ x z = y )
5 equequ2
 |-  ( y = z -> ( x = y <-> x = z ) )
6 5 equcoms
 |-  ( z = y -> ( x = y <-> x = z ) )
7 6 a1i
 |-  ( -. A. x x = y -> ( z = y -> ( x = y <-> x = z ) ) )
8 3 4 7 alrimdd
 |-  ( -. A. x x = y -> ( z = y -> A. x ( x = y <-> x = z ) ) )
9 2 8 eximd
 |-  ( -. A. x x = y -> ( E. z z = y -> E. z A. x ( x = y <-> x = z ) ) )
10 1 9 mpi
 |-  ( -. A. x x = y -> E. z A. x ( x = y <-> x = z ) )
11 eu6
 |-  ( E! x x = y <-> E. z A. x ( x = y <-> x = z ) )
12 10 11 sylibr
 |-  ( -. A. x x = y -> E! x x = y )