Step |
Hyp |
Ref |
Expression |
1 |
|
ax6ev |
|- E. z z = y |
2 |
|
nfv |
|- F/ z -. A. x x = y |
3 |
|
nfna1 |
|- F/ x -. A. x x = y |
4 |
|
nfeqf2 |
|- ( -. A. x x = y -> F/ x z = y ) |
5 |
|
equequ2 |
|- ( y = z -> ( x = y <-> x = z ) ) |
6 |
5
|
equcoms |
|- ( z = y -> ( x = y <-> x = z ) ) |
7 |
6
|
a1i |
|- ( -. A. x x = y -> ( z = y -> ( x = y <-> x = z ) ) ) |
8 |
3 4 7
|
alrimdd |
|- ( -. A. x x = y -> ( z = y -> A. x ( x = y <-> x = z ) ) ) |
9 |
2 8
|
eximd |
|- ( -. A. x x = y -> ( E. z z = y -> E. z A. x ( x = y <-> x = z ) ) ) |
10 |
1 9
|
mpi |
|- ( -. A. x x = y -> E. z A. x ( x = y <-> x = z ) ) |
11 |
|
eu6 |
|- ( E! x x = y <-> E. z A. x ( x = y <-> x = z ) ) |
12 |
10 11
|
sylibr |
|- ( -. A. x x = y -> E! x x = y ) |