| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-mo |
|- ( E* x ph <-> E. u A. x ( ph -> x = u ) ) |
| 2 |
|
nfnf1 |
|- F/ y F/ y ph |
| 3 |
2
|
nfal |
|- F/ y A. x F/ y ph |
| 4 |
|
nfa1 |
|- F/ x A. x F/ y ph |
| 5 |
|
sp |
|- ( A. x F/ y ph -> F/ y ph ) |
| 6 |
|
nfvd |
|- ( A. x F/ y ph -> F/ y x = u ) |
| 7 |
5 6
|
nfimd |
|- ( A. x F/ y ph -> F/ y ( ph -> x = u ) ) |
| 8 |
4 7
|
nfald |
|- ( A. x F/ y ph -> F/ y A. x ( ph -> x = u ) ) |
| 9 |
|
equequ2 |
|- ( u = y -> ( x = u <-> x = y ) ) |
| 10 |
9
|
imbi2d |
|- ( u = y -> ( ( ph -> x = u ) <-> ( ph -> x = y ) ) ) |
| 11 |
10
|
albidv |
|- ( u = y -> ( A. x ( ph -> x = u ) <-> A. x ( ph -> x = y ) ) ) |
| 12 |
11
|
a1i |
|- ( A. x F/ y ph -> ( u = y -> ( A. x ( ph -> x = u ) <-> A. x ( ph -> x = y ) ) ) ) |
| 13 |
3 8 12
|
cbvexdw |
|- ( A. x F/ y ph -> ( E. u A. x ( ph -> x = u ) <-> E. y A. x ( ph -> x = y ) ) ) |
| 14 |
1 13
|
bitrid |
|- ( A. x F/ y ph -> ( E* x ph <-> E. y A. x ( ph -> x = y ) ) ) |