Step |
Hyp |
Ref |
Expression |
1 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ) |
2 |
|
nfnf1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 |
3 |
2
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
4 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
5 |
|
sp |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) |
6 |
|
nfvd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝑥 = 𝑢 ) |
7 |
5 6
|
nfimd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ( 𝜑 → 𝑥 = 𝑢 ) ) |
8 |
4 7
|
nfald |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ) |
9 |
|
equequ2 |
⊢ ( 𝑢 = 𝑦 → ( 𝑥 = 𝑢 ↔ 𝑥 = 𝑦 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑢 ) ↔ ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
11 |
10
|
albidv |
⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
12 |
11
|
a1i |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) ) |
13 |
3 8 12
|
cbvexdw |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
14 |
1 13
|
syl5bb |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |