Metamath Proof Explorer


Theorem wl-mo2t

Description: Closed form of mof . (Contributed by Wolf Lammen, 18-Aug-2019)

Ref Expression
Assertion wl-mo2t ( ∀ 𝑥𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑢𝑥 ( 𝜑𝑥 = 𝑢 ) )
2 nfnf1 𝑦𝑦 𝜑
3 2 nfal 𝑦𝑥𝑦 𝜑
4 nfa1 𝑥𝑥𝑦 𝜑
5 sp ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝜑 )
6 nfvd ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝑥 = 𝑢 )
7 5 6 nfimd ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 ( 𝜑𝑥 = 𝑢 ) )
8 4 7 nfald ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦𝑥 ( 𝜑𝑥 = 𝑢 ) )
9 equequ2 ( 𝑢 = 𝑦 → ( 𝑥 = 𝑢𝑥 = 𝑦 ) )
10 9 imbi2d ( 𝑢 = 𝑦 → ( ( 𝜑𝑥 = 𝑢 ) ↔ ( 𝜑𝑥 = 𝑦 ) ) )
11 10 albidv ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
12 11 a1i ( ∀ 𝑥𝑦 𝜑 → ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) ) )
13 3 8 12 cbvexdw ( ∀ 𝑥𝑦 𝜑 → ( ∃ 𝑢𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
14 1 13 syl5bb ( ∀ 𝑥𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )