| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ) |
| 2 |
|
nfnf1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 |
| 3 |
2
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
| 4 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
| 5 |
|
sp |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) |
| 6 |
|
nfvd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝑥 = 𝑢 ) |
| 7 |
5 6
|
nfimd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ( 𝜑 → 𝑥 = 𝑢 ) ) |
| 8 |
4 7
|
nfald |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ) |
| 9 |
|
equequ2 |
⊢ ( 𝑢 = 𝑦 → ( 𝑥 = 𝑢 ↔ 𝑥 = 𝑦 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑢 ) ↔ ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 11 |
10
|
albidv |
⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 12 |
11
|
a1i |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( 𝑢 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) ) |
| 13 |
3 8 12
|
cbvexdw |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 14 |
1 13
|
bitrid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |