| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-mo | ⊢ ( ∃* 𝑥 𝜑  ↔  ∃ 𝑢 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑢 ) ) | 
						
							| 2 |  | nfnf1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 | 
						
							| 3 | 2 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 | 
						
							| 4 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 | 
						
							| 5 |  | sp | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  Ⅎ 𝑦 𝜑 ) | 
						
							| 6 |  | nfvd | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  Ⅎ 𝑦 𝑥  =  𝑢 ) | 
						
							| 7 | 5 6 | nfimd | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  Ⅎ 𝑦 ( 𝜑  →  𝑥  =  𝑢 ) ) | 
						
							| 8 | 4 7 | nfald | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  Ⅎ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑢 ) ) | 
						
							| 9 |  | equequ2 | ⊢ ( 𝑢  =  𝑦  →  ( 𝑥  =  𝑢  ↔  𝑥  =  𝑦 ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝜑  →  𝑥  =  𝑢 )  ↔  ( 𝜑  →  𝑥  =  𝑦 ) ) ) | 
						
							| 11 | 10 | albidv | ⊢ ( 𝑢  =  𝑦  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑢 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  ( 𝑢  =  𝑦  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑢 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 13 | 3 8 12 | cbvexdw | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  ( ∃ 𝑢 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑢 )  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) ) | 
						
							| 14 | 1 13 | bitrid | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑  →  ( ∃* 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) ) |