Step |
Hyp |
Ref |
Expression |
1 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
2 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
3 |
|
nfnf1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 |
4 |
3
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
5 |
|
sp |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) |
6 |
1 5
|
nfmod |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ∃* 𝑥 𝜑 ) |
7 |
4 6
|
nfan1 |
⊢ Ⅎ 𝑦 ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ∧ ∃* 𝑥 𝜑 ) |
8 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) ) |
9 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( 𝜑 → 𝑥 = 𝑢 ) ) |
10 |
|
spsbim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝑥 = 𝑢 ) ) |
11 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑢 ↔ 𝑦 = 𝑢 ) |
12 |
10 11
|
syl6ib |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑢 ) ) |
13 |
9 12
|
anim12d |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
14 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑦 ) |
15 |
13 14
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
16 |
15
|
exlimiv |
⊢ ( ∃ 𝑢 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑢 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
17 |
8 16
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
18 |
17
|
adantl |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
19 |
7 18
|
alrimi |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ∧ ∃* 𝑥 𝜑 ) → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
20 |
19
|
ex |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
21 |
1 2 20
|
alrimd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
22 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) |
23 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
24 |
|
pm3.3 |
⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ) |
25 |
24
|
com23 |
⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
26 |
25
|
sps |
⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
27 |
22 23 26
|
alrimd |
⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
28 |
27
|
aleximi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
29 |
28
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
30 |
|
moabs |
⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ) |
31 |
|
wl-sb8et |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
32 |
|
wl-mo2t |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
33 |
31 32
|
imbi12d |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) ) |
34 |
30 33
|
syl5bb |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) ) |
35 |
29 34
|
syl5ibr |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) ) |
36 |
21 35
|
impbid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |