Step |
Hyp |
Ref |
Expression |
1 |
|
nfnf1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 |
2 |
1
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
3 |
|
equsb3 |
⊢ ( [ 𝑣 / 𝑥 ] 𝑥 = 𝑢 ↔ 𝑣 = 𝑢 ) |
4 |
3
|
sblbis |
⊢ ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ( [ 𝑣 / 𝑥 ] 𝜑 ↔ 𝑣 = 𝑢 ) ) |
5 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
6 |
|
sp |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) |
7 |
5 6
|
nfsbd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] 𝜑 ) |
8 |
|
nfvd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝑣 = 𝑢 ) |
9 |
7 8
|
nfbid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ( [ 𝑣 / 𝑥 ] 𝜑 ↔ 𝑣 = 𝑢 ) ) |
10 |
4 9
|
nfxfrd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
11 |
|
sbequ |
⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) |
12 |
11
|
a1i |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) ) |
13 |
2 10 12
|
cbvald |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) |
14 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝜑 ↔ 𝑥 = 𝑢 ) |
15 |
14
|
sb8 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
16 |
15
|
bicomi |
⊢ ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
17 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑢 ↔ 𝑦 = 𝑢 ) |
18 |
17
|
sblbis |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
19 |
18
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
20 |
13 16 19
|
3bitr3g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) ) |
21 |
20
|
exbidv |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑢 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∃ 𝑢 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) ) |
22 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
23 |
|
eu6 |
⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑢 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
24 |
21 22 23
|
3bitr4g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |