Metamath Proof Explorer


Theorem wl-sb8eut

Description: Substitution of variable in universal quantifier. Closed form of sb8eu . (Contributed by Wolf Lammen, 11-Aug-2019)

Ref Expression
Assertion wl-sb8eut ( ∀ 𝑥𝑦 𝜑 → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfnf1 𝑦𝑦 𝜑
2 1 nfal 𝑦𝑥𝑦 𝜑
3 equsb3 ( [ 𝑣 / 𝑥 ] 𝑥 = 𝑢𝑣 = 𝑢 )
4 3 sblbis ( [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ ( [ 𝑣 / 𝑥 ] 𝜑𝑣 = 𝑢 ) )
5 nfa1 𝑥𝑥𝑦 𝜑
6 sp ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝜑 )
7 5 6 nfsbd ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] 𝜑 )
8 nfvd ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝑣 = 𝑢 )
9 7 8 nfbid ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 ( [ 𝑣 / 𝑥 ] 𝜑𝑣 = 𝑢 ) )
10 4 9 nfxfrd ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) )
11 sbequ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ) )
12 11 a1i ( ∀ 𝑥𝑦 𝜑 → ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ) ) )
13 2 10 12 cbvald ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ) )
14 nfv 𝑣 ( 𝜑𝑥 = 𝑢 )
15 14 sb8 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) )
16 15 bicomi ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑢 ) )
17 equsb3 ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑢𝑦 = 𝑢 )
18 17 sblbis ( [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑢 ) )
19 18 albii ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑢 ) )
20 13 16 19 3bitr3g ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑢 ) ) )
21 20 exbidv ( ∀ 𝑥𝑦 𝜑 → ( ∃ 𝑢𝑥 ( 𝜑𝑥 = 𝑢 ) ↔ ∃ 𝑢𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑢 ) ) )
22 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑢𝑥 ( 𝜑𝑥 = 𝑢 ) )
23 eu6 ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑢𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑢 ) )
24 21 22 23 3bitr4g ( ∀ 𝑥𝑦 𝜑 → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )