Metamath Proof Explorer


Theorem wl-sb8mot

Description: Substitution of variable in universal quantifier. Closed form of sb8mo . (Contributed by Wolf Lammen, 11-Aug-2019)

Ref Expression
Assertion wl-sb8mot ( ∀ 𝑥𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 wl-sb8et ( ∀ 𝑥𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
2 wl-sb8eut ( ∀ 𝑥𝑦 𝜑 → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
3 1 2 imbi12d ( ∀ 𝑥𝑦 𝜑 → ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) )
4 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
5 moeu ( ∃* 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
6 3 4 5 3bitr4g ( ∀ 𝑥𝑦 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )