Metamath Proof Explorer


Theorem wl-sb8eut

Description: Substitution of variable in universal quantifier. Closed form of sb8eu . (Contributed by Wolf Lammen, 11-Aug-2019)

Ref Expression
Assertion wl-sb8eut xyφ∃!xφ∃!yyxφ

Proof

Step Hyp Ref Expression
1 nfnf1 yyφ
2 1 nfal yxyφ
3 equsb3 vxx=uv=u
4 3 sblbis vxφx=uvxφv=u
5 nfa1 xxyφ
6 sp xyφyφ
7 5 6 nfsbd xyφyvxφ
8 nfvd xyφyv=u
9 7 8 nfbid xyφyvxφv=u
10 4 9 nfxfrd xyφyvxφx=u
11 sbequ v=yvxφx=uyxφx=u
12 11 a1i xyφv=yvxφx=uyxφx=u
13 2 10 12 cbvald xyφvvxφx=uyyxφx=u
14 nfv vφx=u
15 14 sb8 xφx=uvvxφx=u
16 15 bicomi vvxφx=uxφx=u
17 equsb3 yxx=uy=u
18 17 sblbis yxφx=uyxφy=u
19 18 albii yyxφx=uyyxφy=u
20 13 16 19 3bitr3g xyφxφx=uyyxφy=u
21 20 exbidv xyφuxφx=uuyyxφy=u
22 eu6 ∃!xφuxφx=u
23 eu6 ∃!yyxφuyyxφy=u
24 21 22 23 3bitr4g xyφ∃!xφ∃!yyxφ