Metamath Proof Explorer


Theorem wl-nfalv

Description: If x is not present in ph , it is not free in A. y ph . (Contributed by Wolf Lammen, 11-Jan-2020)

Ref Expression
Assertion wl-nfalv 𝑥𝑦 𝜑

Proof

Step Hyp Ref Expression
1 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
2 1 hbal ( ∀ 𝑦 𝜑 → ∀ 𝑥𝑦 𝜑 )
3 2 nf5i 𝑥𝑦 𝜑