Description: If x is not present in ph , it is not free in A. y ph . (Contributed by Wolf Lammen, 11-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-nfalv | |- F/ x A. y ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 | |- ( ph -> A. x ph ) |
|
2 | 1 | hbal | |- ( A. y ph -> A. x A. y ph ) |
3 | 2 | nf5i | |- F/ x A. y ph |