Description: If x is not present in ph , it is not free in A. y ph . (Contributed by Wolf Lammen, 11-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-nfalv | |- F/ x A. y ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 | |- ( ph -> A. x ph ) |
|
| 2 | 1 | hbal | |- ( A. y ph -> A. x A. y ph ) |
| 3 | 2 | nf5i | |- F/ x A. y ph |