Description: If x is not present in ph , it is not free in A. y ph . (Contributed by Wolf Lammen, 11-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-nfalv | |- F/ x A. y ph | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-5 | |- ( ph -> A. x ph ) | |
| 2 | 1 | hbal | |- ( A. y ph -> A. x A. y ph ) | 
| 3 | 2 | nf5i | |- F/ x A. y ph |