| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ) | 
						
							| 2 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 3 |  | elnnnn0c | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 4 | 3 | biimpri | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 5 | 2 4 | sylan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 6 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 8 |  | fvex | ⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } )  ∈  V | 
						
							| 9 | 8 1 | fnmpti | ⊢ 𝐹  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 10 |  | ffzo0hash | ⊢ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0  ∧  𝐹  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 11 | 7 9 10 | sylancl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) |