| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-wspthsn | ⊢  WSPathsN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) | 
						
							| 2 | 1 | elmpocl | ⊢ ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WSPathsN  𝐺 ) )  →  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 4 |  | iswspthn | ⊢ ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WSPathsN  𝐺 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 7 |  | 3anass | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) | 
						
							| 8 | 3 6 7 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WSPathsN  𝐺 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 9 | 2 8 | mpancom | ⊢ ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |