Description: A walk of length 0 is represented by a singleton word. (Contributed by Alexander van der Vekens, 20-Jul-2018) (Revised by AV, 9-Apr-2021) (Proof shortened by AV, 21-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wwlkssswrd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wwlksn0 | ⊢ ( 𝑊 ∈ ( 0 WWalksN 𝐺 ) → ∃ 𝑣 ∈ 𝑉 𝑊 = 〈“ 𝑣 ”〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wwlkssswrd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wrdl1exs1 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑊 = 〈“ 𝑣 ”〉 ) | |
| 3 | fveqeq2 | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = 1 ↔ ( ♯ ‘ 𝑊 ) = 1 ) ) | |
| 4 | wwlksn0s | ⊢ ( 0 WWalksN 𝐺 ) = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 1 } | |
| 5 | 3 4 | elrab2 | ⊢ ( 𝑊 ∈ ( 0 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ) | 
| 6 | 1 | rexeqi | ⊢ ( ∃ 𝑣 ∈ 𝑉 𝑊 = 〈“ 𝑣 ”〉 ↔ ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑊 = 〈“ 𝑣 ”〉 ) | 
| 7 | 2 5 6 | 3imtr4i | ⊢ ( 𝑊 ∈ ( 0 WWalksN 𝐺 ) → ∃ 𝑣 ∈ 𝑉 𝑊 = 〈“ 𝑣 ”〉 ) |