Step |
Hyp |
Ref |
Expression |
1 |
|
elixp2 |
⊢ ( 𝐺 ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) |
2 |
|
3ancoma |
⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) |
3 |
|
2onn |
⊢ 2o ∈ ω |
4 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
5 |
3 4
|
ax-mp |
⊢ 2o ∈ Fin |
6 |
|
fnfi |
⊢ ( ( 𝐺 Fn 2o ∧ 2o ∈ Fin ) → 𝐺 ∈ Fin ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝐺 Fn 2o → 𝐺 ∈ Fin ) |
8 |
7
|
elexd |
⊢ ( 𝐺 Fn 2o → 𝐺 ∈ V ) |
9 |
8
|
biantrurd |
⊢ ( 𝐺 Fn 2o → ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ) |
10 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
11 |
10
|
raleqi |
⊢ ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
|
1oex |
⊢ 1o ∈ V |
14 |
|
fveq2 |
⊢ ( 𝑘 = ∅ → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ∅ ) ) |
15 |
|
iftrue |
⊢ ( 𝑘 = ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐴 ) |
16 |
14 15
|
eleq12d |
⊢ ( 𝑘 = ∅ → ( ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 1o → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 1o ) ) |
18 |
|
1n0 |
⊢ 1o ≠ ∅ |
19 |
|
neeq1 |
⊢ ( 𝑘 = 1o → ( 𝑘 ≠ ∅ ↔ 1o ≠ ∅ ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝑘 = 1o → 𝑘 ≠ ∅ ) |
21 |
|
ifnefalse |
⊢ ( 𝑘 ≠ ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( 𝑘 = 1o → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 ) |
23 |
17 22
|
eleq12d |
⊢ ( 𝑘 = 1o → ( ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
24 |
12 13 16 23
|
ralpr |
⊢ ( ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
25 |
11 24
|
bitri |
⊢ ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
26 |
9 25
|
bitr3di |
⊢ ( 𝐺 Fn 2o → ( ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) |
27 |
26
|
pm5.32i |
⊢ ( ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) |
28 |
|
3anass |
⊢ ( ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ) |
29 |
|
3anass |
⊢ ( ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) |
30 |
27 28 29
|
3bitr4i |
⊢ ( ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
31 |
2 30
|
bitri |
⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
32 |
1 31
|
bitri |
⊢ ( 𝐺 ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |