Metamath Proof Explorer


Theorem xpsfrnel

Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion xpsfrnel ( 𝐺X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elixp2 ( 𝐺X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) )
2 3ancoma ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) )
3 2onn 2o ∈ ω
4 nnfi ( 2o ∈ ω → 2o ∈ Fin )
5 3 4 ax-mp 2o ∈ Fin
6 fnfi ( ( 𝐺 Fn 2o ∧ 2o ∈ Fin ) → 𝐺 ∈ Fin )
7 5 6 mpan2 ( 𝐺 Fn 2o𝐺 ∈ Fin )
8 7 elexd ( 𝐺 Fn 2o𝐺 ∈ V )
9 8 biantrurd ( 𝐺 Fn 2o → ( ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) )
10 df2o3 2o = { ∅ , 1o }
11 10 raleqi ( ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) )
12 0ex ∅ ∈ V
13 1oex 1o ∈ V
14 fveq2 ( 𝑘 = ∅ → ( 𝐺𝑘 ) = ( 𝐺 ‘ ∅ ) )
15 iftrue ( 𝑘 = ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐴 )
16 14 15 eleq12d ( 𝑘 = ∅ → ( ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) )
17 fveq2 ( 𝑘 = 1o → ( 𝐺𝑘 ) = ( 𝐺 ‘ 1o ) )
18 1n0 1o ≠ ∅
19 neeq1 ( 𝑘 = 1o → ( 𝑘 ≠ ∅ ↔ 1o ≠ ∅ ) )
20 18 19 mpbiri ( 𝑘 = 1o𝑘 ≠ ∅ )
21 ifnefalse ( 𝑘 ≠ ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 )
22 20 21 syl ( 𝑘 = 1o → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 )
23 17 22 eleq12d ( 𝑘 = 1o → ( ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )
24 12 13 16 23 ralpr ( ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )
25 11 24 bitri ( ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )
26 9 25 bitr3di ( 𝐺 Fn 2o → ( ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) )
27 26 pm5.32i ( ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) )
28 3anass ( ( 𝐺 Fn 2o𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) )
29 3anass ( ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) )
30 27 28 29 3bitr4i ( ( 𝐺 Fn 2o𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )
31 2 30 bitri ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )
32 1 31 bitri ( 𝐺X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) )