Metamath Proof Explorer


Theorem xpsfrnel

Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion xpsfrnel Gk2𝑜ifk=ABGFn2𝑜GAG1𝑜B

Proof

Step Hyp Ref Expression
1 elixp2 Gk2𝑜ifk=ABGVGFn2𝑜k2𝑜Gkifk=AB
2 3ancoma GVGFn2𝑜k2𝑜Gkifk=ABGFn2𝑜GVk2𝑜Gkifk=AB
3 2onn 2𝑜ω
4 nnfi 2𝑜ω2𝑜Fin
5 3 4 ax-mp 2𝑜Fin
6 fnfi GFn2𝑜2𝑜FinGFin
7 5 6 mpan2 GFn2𝑜GFin
8 7 elexd GFn2𝑜GV
9 8 biantrurd GFn2𝑜k2𝑜Gkifk=ABGVk2𝑜Gkifk=AB
10 df2o3 2𝑜=1𝑜
11 10 raleqi k2𝑜Gkifk=ABk1𝑜Gkifk=AB
12 0ex V
13 1oex 1𝑜V
14 fveq2 k=Gk=G
15 iftrue k=ifk=AB=A
16 14 15 eleq12d k=Gkifk=ABGA
17 fveq2 k=1𝑜Gk=G1𝑜
18 1n0 1𝑜
19 neeq1 k=1𝑜k1𝑜
20 18 19 mpbiri k=1𝑜k
21 ifnefalse kifk=AB=B
22 20 21 syl k=1𝑜ifk=AB=B
23 17 22 eleq12d k=1𝑜Gkifk=ABG1𝑜B
24 12 13 16 23 ralpr k1𝑜Gkifk=ABGAG1𝑜B
25 11 24 bitri k2𝑜Gkifk=ABGAG1𝑜B
26 9 25 bitr3di GFn2𝑜GVk2𝑜Gkifk=ABGAG1𝑜B
27 26 pm5.32i GFn2𝑜GVk2𝑜Gkifk=ABGFn2𝑜GAG1𝑜B
28 3anass GFn2𝑜GVk2𝑜Gkifk=ABGFn2𝑜GVk2𝑜Gkifk=AB
29 3anass GFn2𝑜GAG1𝑜BGFn2𝑜GAG1𝑜B
30 27 28 29 3bitr4i GFn2𝑜GVk2𝑜Gkifk=ABGFn2𝑜GAG1𝑜B
31 2 30 bitri GVGFn2𝑜k2𝑜Gkifk=ABGFn2𝑜GAG1𝑜B
32 1 31 bitri Gk2𝑜ifk=ABGFn2𝑜GAG1𝑜B