Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12i | Unicode version |
Description: Inference joining two implications. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Mel L. O'Cat, 29-Oct-2011.) |
Ref | Expression |
---|---|
imim12i.1 | |
imim12i.2 |
Ref | Expression |
---|---|
imim12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12i.1 | . 2 | |
2 | imim12i.2 | . . 3 | |
3 | 2 | imim2i 14 | . 2 |
4 | 1, 3 | syl5 32 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: imim1i 58 dedlem0b 953 meredith 1472 pssnn 7758 kmlem1 8551 brdom5 8928 brdom4 8929 axpowndlem2 8994 axpowndlem2OLD 8995 xrge0infss 27580 naim1 29850 naim2 29851 meran1 29876 axc11next 31313 bj-gl4 34184 rp-fakeanorass 37737 fiinfi 37758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |