Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin3 | Unicode version |
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intmin3.2 | |
intmin3.3 |
Ref | Expression |
---|---|
intmin3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intmin3.3 | . . 3 | |
2 | intmin3.2 | . . . 4 | |
3 | 2 | elabg 3247 | . . 3 |
4 | 1, 3 | mpbiri 233 | . 2 |
5 | intss1 4301 | . 2 | |
6 | 4, 5 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442
C_ wss 3475 |^| cint 4286 |
This theorem is referenced by: intabs 4613 intid 4710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |