MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin3 Unicode version

Theorem intmin3 4315
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2
intmin3.3
Assertion
Ref Expression
intmin3
Distinct variable groups:   ,   ,

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3
2 intmin3.2 . . . 4
32elabg 3247 . . 3
41, 3mpbiri 233 . 2
5 intss1 4301 . 2
64, 5syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  e.wcel 1818  {cab 2442  C_wss 3475  |^|cint 4286
This theorem is referenced by:  intabs  4613  intid  4710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-int 4287
  Copyright terms: Public domain W3C validator