Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intabs | Unicode version |
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intabs.1 | |
intabs.2 | |
intabs.3 |
Ref | Expression |
---|---|
intabs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3524 | . . . . . 6 | |
2 | intabs.2 | . . . . . 6 | |
3 | 1, 2 | anbi12d 710 | . . . . 5 |
4 | intabs.3 | . . . . 5 | |
5 | 3, 4 | intmin3 4315 | . . . 4 |
6 | intnex 4609 | . . . . 5 | |
7 | ssv 3523 | . . . . . 6 | |
8 | sseq2 3525 | . . . . . 6 | |
9 | 7, 8 | mpbiri 233 | . . . . 5 |
10 | 6, 9 | sylbi 195 | . . . 4 |
11 | 5, 10 | pm2.61i 164 | . . 3 |
12 | intabs.1 | . . . . 5 | |
13 | 12 | cbvabv 2600 | . . . 4 |
14 | 13 | inteqi 4290 | . . 3 |
15 | 11, 14 | sseqtr4i 3536 | . 2 |
16 | simpr 461 | . . . 4 | |
17 | 16 | ss2abi 3571 | . . 3 |
18 | intss 4307 | . . 3 | |
19 | 17, 18 | ax-mp 5 | . 2 |
20 | 15, 19 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 cvv 3109
C_ wss 3475 |^| cint 4286 |
This theorem is referenced by: dfnn3 10575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-int 4287 |
Copyright terms: Public domain | W3C validator |