Step |
Hyp |
Ref |
Expression |
1 |
|
intabs.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
intabs.2 |
⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
intabs.3 |
⊢ ( ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ∧ 𝜒 ) |
4 |
|
sseq1 |
⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( 𝑥 ⊆ 𝐴 ↔ ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ) ) |
5 |
4 2
|
anbi12d |
⊢ ( 𝑥 = ∩ { 𝑦 ∣ 𝜓 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) ↔ ( ∩ { 𝑦 ∣ 𝜓 } ⊆ 𝐴 ∧ 𝜒 ) ) ) |
6 |
5 3
|
intmin3 |
⊢ ( ∩ { 𝑦 ∣ 𝜓 } ∈ V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
7 |
|
intnex |
⊢ ( ¬ ∩ { 𝑦 ∣ 𝜓 } ∈ V ↔ ∩ { 𝑦 ∣ 𝜓 } = V ) |
8 |
|
ssv |
⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ V |
9 |
|
sseq2 |
⊢ ( ∩ { 𝑦 ∣ 𝜓 } = V → ( ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ↔ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ V ) ) |
10 |
8 9
|
mpbiri |
⊢ ( ∩ { 𝑦 ∣ 𝜓 } = V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
11 |
7 10
|
sylbi |
⊢ ( ¬ ∩ { 𝑦 ∣ 𝜓 } ∈ V → ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } ) |
12 |
6 11
|
pm2.61i |
⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑦 ∣ 𝜓 } |
13 |
1
|
cbvabv |
⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
14 |
13
|
inteqi |
⊢ ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑦 ∣ 𝜓 } |
15 |
12 14
|
sseqtrri |
⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ ∩ { 𝑥 ∣ 𝜑 } |
16 |
|
simpr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) → 𝜑 ) |
17 |
16
|
ss2abi |
⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝜑 } |
18 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ 𝜑 } ⊆ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ) |
19 |
17 18
|
ax-mp |
⊢ ∩ { 𝑥 ∣ 𝜑 } ⊆ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } |
20 |
15 19
|
eqssi |
⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } |