MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota5 Unicode version

Theorem iota5 5576
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1
Assertion
Ref Expression
iota5
Distinct variable groups:   ,   ,   ,

Proof of Theorem iota5
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3
21alrimiv 1719 . 2
3 eqeq2 2472 . . . . . . 7
43bibi2d 318 . . . . . 6
54albidv 1713 . . . . 5
6 eqeq2 2472 . . . . 5
75, 6imbi12d 320 . . . 4
8 iotaval 5567 . . . 4
97, 8vtoclg 3167 . . 3
109adantl 466 . 2
112, 10mpd 15 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818  iotacio 5554
This theorem is referenced by:  isf32lem9  8762  rlimdm  13374  fsum  13542  fprod  13748  gsumval2a  15906  dchrptlem1  23539  lgsdchrval  23622  rlimdmafv  32262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-v 3111  df-sbc 3328  df-un 3480  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator