Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq3 Unicode version

Theorem isoeq3 6217
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3

Proof of Theorem isoeq3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4454 . . . . 5
21bibi2d 318 . . . 4
322ralbidv 2901 . . 3
43anbi2d 703 . 2
5 df-isom 5602 . 2
6 df-isom 5602 . 2
74, 5, 63bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  A.wral 2807   class class class wbr 4452  -1-1-onto->wf1o 5592  cfv 5593  Isom`wiso 5594 This theorem is referenced by:  fnwelem  6915  hartogslem1  7988  leiso  12508  gtiso  27519 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-cleq 2449  df-clel 2452  df-ral 2812  df-br 4453  df-isom 5602
 Copyright terms: Public domain W3C validator