Metamath Proof Explorer


Theorem 1arympt1

Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024)

Ref Expression
Hypothesis 1arympt1.f
|- F = ( x e. ( X ^m { 0 } ) |-> ( A ` ( x ` 0 ) ) )
Assertion 1arympt1
|- ( ( X e. V /\ A : X --> X ) -> F e. ( 1 -aryF X ) )

Proof

Step Hyp Ref Expression
1 1arympt1.f
 |-  F = ( x e. ( X ^m { 0 } ) |-> ( A ` ( x ` 0 ) ) )
2 eqid
 |-  ( X ^m { 0 } ) = ( X ^m { 0 } )
3 id
 |-  ( x e. ( X ^m { 0 } ) -> x e. ( X ^m { 0 } ) )
4 c0ex
 |-  0 e. _V
5 4 snid
 |-  0 e. { 0 }
6 5 a1i
 |-  ( x e. ( X ^m { 0 } ) -> 0 e. { 0 } )
7 2 3 6 mapfvd
 |-  ( x e. ( X ^m { 0 } ) -> ( x ` 0 ) e. X )
8 ffvelrn
 |-  ( ( A : X --> X /\ ( x ` 0 ) e. X ) -> ( A ` ( x ` 0 ) ) e. X )
9 7 8 sylan2
 |-  ( ( A : X --> X /\ x e. ( X ^m { 0 } ) ) -> ( A ` ( x ` 0 ) ) e. X )
10 9 1 fmptd
 |-  ( A : X --> X -> F : ( X ^m { 0 } ) --> X )
11 1aryfvalel
 |-  ( X e. V -> ( F e. ( 1 -aryF X ) <-> F : ( X ^m { 0 } ) --> X ) )
12 10 11 syl5ibr
 |-  ( X e. V -> ( A : X --> X -> F e. ( 1 -aryF X ) ) )
13 12 imp
 |-  ( ( X e. V /\ A : X --> X ) -> F e. ( 1 -aryF X ) )