Metamath Proof Explorer


Theorem 1arympt1

Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024)

Ref Expression
Hypothesis 1arympt1.f F = x X 0 A x 0
Assertion 1arympt1 Could not format assertion : No typesetting found for |- ( ( X e. V /\ A : X --> X ) -> F e. ( 1 -aryF X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 1arympt1.f F = x X 0 A x 0
2 eqid X 0 = X 0
3 id x X 0 x X 0
4 c0ex 0 V
5 4 snid 0 0
6 5 a1i x X 0 0 0
7 2 3 6 mapfvd x X 0 x 0 X
8 ffvelrn A : X X x 0 X A x 0 X
9 7 8 sylan2 A : X X x X 0 A x 0 X
10 9 1 fmptd A : X X F : X 0 X
11 1aryfvalel Could not format ( X e. V -> ( F e. ( 1 -aryF X ) <-> F : ( X ^m { 0 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( F e. ( 1 -aryF X ) <-> F : ( X ^m { 0 } ) --> X ) ) with typecode |-
12 10 11 syl5ibr Could not format ( X e. V -> ( A : X --> X -> F e. ( 1 -aryF X ) ) ) : No typesetting found for |- ( X e. V -> ( A : X --> X -> F e. ( 1 -aryF X ) ) ) with typecode |-
13 12 imp Could not format ( ( X e. V /\ A : X --> X ) -> F e. ( 1 -aryF X ) ) : No typesetting found for |- ( ( X e. V /\ A : X --> X ) -> F e. ( 1 -aryF X ) ) with typecode |-