Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
1arympt1
Next ⟩
1arympt1fv
Metamath Proof Explorer
Ascii
Unicode
Theorem
1arympt1
Description:
A unary (endo)function in maps-to notation.
(Contributed by
AV
, 16-May-2024)
Ref
Expression
Hypothesis
1arympt1.f
⊢
F
=
x
∈
X
0
⟼
A
⁡
x
⁡
0
Assertion
1arympt1
⊢
X
∈
V
∧
A
:
X
⟶
X
→
F
∈
1
-aryF
X
Proof
Step
Hyp
Ref
Expression
1
1arympt1.f
⊢
F
=
x
∈
X
0
⟼
A
⁡
x
⁡
0
2
eqid
⊢
X
0
=
X
0
3
id
⊢
x
∈
X
0
→
x
∈
X
0
4
c0ex
⊢
0
∈
V
5
4
snid
⊢
0
∈
0
6
5
a1i
⊢
x
∈
X
0
→
0
∈
0
7
2
3
6
mapfvd
⊢
x
∈
X
0
→
x
⁡
0
∈
X
8
ffvelcdm
⊢
A
:
X
⟶
X
∧
x
⁡
0
∈
X
→
A
⁡
x
⁡
0
∈
X
9
7
8
sylan2
⊢
A
:
X
⟶
X
∧
x
∈
X
0
→
A
⁡
x
⁡
0
∈
X
10
9
1
fmptd
⊢
A
:
X
⟶
X
→
F
:
X
0
⟶
X
11
1aryfvalel
⊢
X
∈
V
→
F
∈
1
-aryF
X
↔
F
:
X
0
⟶
X
12
10
11
imbitrrid
⊢
X
∈
V
→
A
:
X
⟶
X
→
F
∈
1
-aryF
X
13
12
imp
⊢
X
∈
V
∧
A
:
X
⟶
X
→
F
∈
1
-aryF
X