Metamath Proof Explorer


Theorem 1arympt1

Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024)

Ref Expression
Hypothesis 1arympt1.f F = x X 0 A x 0
Assertion 1arympt1 X V A : X X F 1 -aryF X

Proof

Step Hyp Ref Expression
1 1arympt1.f F = x X 0 A x 0
2 eqid X 0 = X 0
3 id x X 0 x X 0
4 c0ex 0 V
5 4 snid 0 0
6 5 a1i x X 0 0 0
7 2 3 6 mapfvd x X 0 x 0 X
8 ffvelcdm A : X X x 0 X A x 0 X
9 7 8 sylan2 A : X X x X 0 A x 0 X
10 9 1 fmptd A : X X F : X 0 X
11 1aryfvalel X V F 1 -aryF X F : X 0 X
12 10 11 imbitrrid X V A : X X F 1 -aryF X
13 12 imp X V A : X X F 1 -aryF X