| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-div |  |-  / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) | 
						
							| 2 |  | riotaex |  |-  ( iota_ z e. CC ( y x. z ) = x ) e. _V | 
						
							| 3 | 1 2 | dmmpo |  |-  dom / = ( CC X. ( CC \ { 0 } ) ) | 
						
							| 4 |  | eqid |  |-  0 = 0 | 
						
							| 5 |  | eldifsni |  |-  ( 0 e. ( CC \ { 0 } ) -> 0 =/= 0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) -> 0 =/= 0 ) | 
						
							| 7 | 6 | necon2bi |  |-  ( 0 = 0 -> -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) | 
						
							| 8 | 4 7 | ax-mp |  |-  -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) | 
						
							| 9 |  | ndmovg |  |-  ( ( dom / = ( CC X. ( CC \ { 0 } ) ) /\ -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) -> ( 1 / 0 ) = (/) ) | 
						
							| 10 | 3 8 9 | mp2an |  |-  ( 1 / 0 ) = (/) |