| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2wlkd.p |
|- P = <" A B C "> |
| 2 |
|
2wlkd.f |
|- F = <" J K "> |
| 3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
| 4 |
1 2 3
|
2wlkdlem3 |
|- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 5 |
|
simp1 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) = A ) |
| 6 |
5
|
eleq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 0 ) e. V <-> A e. V ) ) |
| 7 |
|
simp2 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
| 8 |
7
|
eleq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 1 ) e. V <-> B e. V ) ) |
| 9 |
|
simp3 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
| 10 |
9
|
eleq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) e. V <-> C e. V ) ) |
| 11 |
6 8 10
|
3anbi123d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) <-> ( A e. V /\ B e. V /\ C e. V ) ) ) |
| 12 |
11
|
bicomd |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) |
| 13 |
4 12
|
syl |
|- ( ph -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) |
| 14 |
3 13
|
mpbid |
|- ( ph -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 15 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K "> ) |
| 16 |
|
s2len |
|- ( # ` <" J K "> ) = 2 |
| 17 |
15 16
|
eqtri |
|- ( # ` F ) = 2 |
| 18 |
17
|
oveq2i |
|- ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) |
| 19 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
| 20 |
18 19
|
eqtri |
|- ( 0 ... ( # ` F ) ) = { 0 , 1 , 2 } |
| 21 |
20
|
raleqi |
|- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> A. k e. { 0 , 1 , 2 } ( P ` k ) e. V ) |
| 22 |
|
c0ex |
|- 0 e. _V |
| 23 |
|
1ex |
|- 1 e. _V |
| 24 |
|
2ex |
|- 2 e. _V |
| 25 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
| 26 |
25
|
eleq1d |
|- ( k = 0 -> ( ( P ` k ) e. V <-> ( P ` 0 ) e. V ) ) |
| 27 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
| 28 |
27
|
eleq1d |
|- ( k = 1 -> ( ( P ` k ) e. V <-> ( P ` 1 ) e. V ) ) |
| 29 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
| 30 |
29
|
eleq1d |
|- ( k = 2 -> ( ( P ` k ) e. V <-> ( P ` 2 ) e. V ) ) |
| 31 |
22 23 24 26 28 30
|
raltp |
|- ( A. k e. { 0 , 1 , 2 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 32 |
21 31
|
bitri |
|- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 33 |
14 32
|
sylibr |
|- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |