Metamath Proof Explorer


Theorem 3cubeslem3

Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a
|- ( ph -> A e. QQ )
Assertion 3cubeslem3
|- ( ph -> ( A x. ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 3 ) ^ 3 ) ) = ( ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) - 1 ) ^ 3 ) + ( ( ( -u ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 1 ) ^ 3 ) ) + ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) ^ 3 ) ) )

Proof

Step Hyp Ref Expression
1 3cubeslem1.a
 |-  ( ph -> A e. QQ )
2 1 3cubeslem3l
 |-  ( ph -> ( A x. ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 3 ) ^ 3 ) ) = ( ( ( A ^ 7 ) x. ( 3 ^ 9 ) ) + ( ( ( A ^ 6 ) x. ( 3 ^ 9 ) ) + ( ( ( A ^ 5 ) x. ( ( 3 ^ 8 ) + ( 3 ^ 8 ) ) ) + ( ( ( A ^ 4 ) x. ( ( ( 3 ^ 7 ) x. 2 ) + ( 3 ^ 6 ) ) ) + ( ( ( A ^ 3 ) x. ( ( 3 ^ 6 ) + ( 3 ^ 6 ) ) ) + ( ( ( A ^ 2 ) x. ( 3 ^ 5 ) ) + ( A x. ( 3 ^ 3 ) ) ) ) ) ) ) ) )
3 1 3cubeslem3r
 |-  ( ph -> ( ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) - 1 ) ^ 3 ) + ( ( ( -u ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 1 ) ^ 3 ) ) + ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) ^ 3 ) ) = ( ( ( A ^ 7 ) x. ( 3 ^ 9 ) ) + ( ( ( A ^ 6 ) x. ( 3 ^ 9 ) ) + ( ( ( A ^ 5 ) x. ( ( 3 ^ 8 ) + ( 3 ^ 8 ) ) ) + ( ( ( A ^ 4 ) x. ( ( ( 3 ^ 7 ) x. 2 ) + ( 3 ^ 6 ) ) ) + ( ( ( A ^ 3 ) x. ( ( 3 ^ 6 ) + ( 3 ^ 6 ) ) ) + ( ( ( A ^ 2 ) x. ( 3 ^ 5 ) ) + ( A x. ( 3 ^ 3 ) ) ) ) ) ) ) ) )
4 2 3 eqtr4d
 |-  ( ph -> ( A x. ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 3 ) ^ 3 ) ) = ( ( ( ( ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) - 1 ) ^ 3 ) + ( ( ( -u ( ( 3 ^ 3 ) x. ( A ^ 3 ) ) + ( ( 3 ^ 2 ) x. A ) ) + 1 ) ^ 3 ) ) + ( ( ( ( 3 ^ 3 ) x. ( A ^ 2 ) ) + ( ( 3 ^ 2 ) x. A ) ) ^ 3 ) ) )